Developing the Blueprint for a Scramjet

Although researchers are keen to develop a successful scramjet engine, designing and testing this type of engine has proved difficult. For example, the WaveRider scramjet test vehicle, built by the engineering powerhouses of DARPA, Boeing and Pratt and Whitney Rocketdyne, only had two successful flights of four. Scramspace also built and unsuccessfully tested a flight vehicle. Developing a successful design for a scramjet has not been a simple task, but, through patient research among experts on varying aspects of scramjet technology, a blueprint for a the engine is slowly taking shape.

Researchers are tackling varying design aspects of the scramjet engine, refining the physics and theorizing how components would work most effectively. In the Sep-Oct 2014 issue of the AIAA Journal of Propulsion and Power, at least three articles summarized research directly related to scramjet engine development. While each article addressed only a small aspect of component design, like the best width of cavities to increase fuel-air mixing (for more effective combustion), central design difficulties are being addressed. One of the most pressing issues with scramjets is having successful combustion at supersonic speeds. Two of the articles address this issue.

Korean researchers explored the issue of starting and sustaining combustion. The team created a two dimensional model for testing different lengths of combustor area. By varying the length of the combustor, the researchers could determine which configuration allowed ignition and sustained combustion. In four of seven tests, their “medium” length combustion area had supersonic combustion. The medium length allowed the fuel to atomize (small droplets) along the length of the combustion, so that the fuel was ignited successfully when it reached the flame. This short technical paper helped lay the foundation for designing a successful combustor length.

Cavities are another design idea intended to enable combustion at supersonic speeds. Previous work has established that cavities (like the semi-circular holes on golf balls) increase fuel-air mixing by making the air around them more turbulent. The turbulent air does not stream out of the engine as fast, allowing it to swirl around and mix with the fuel more thoroughly before reaching the flame (ignitor). A joint team of Korean and Indian scientists published their research on how the width of these cavities can increase or decrease the amount of turbulence just downstream of the cavity. Now future designers can arrange the width of cavities so that there is successful fuel-air mixing and therefore combustion.

While researchers are focused on determining how to have successful combustion at supersonic air speeds, other physics problems remain to be solved.  For example, how do they design an inlet that takes in air at hypersonic (above Mach 5) speeds? At these speeds, shocks play a vital role in aerodynamics – the assumptions of how air works at subsonic speeds do not apply. Shock waves and expansion fans, physical phenomena at high speeds, drastically alter the pressures and temperatures at the inlet. A Chinese team looked more carefully at the physical interaction of these phenomena, attempting to refine a theory developed in 1975, which they believed did not take into account the interference from expansion waves at the “shoulder” of the inlet. Further refining the community knowledge of the physical interactions at hypersonic inlets will eventually aid in the design of such inlets.

While scramjet testing in flight conditions (outside of the laboratory) can be expensive and has a historically low probability of success, theoretical refinements in component design are building a blueprint for scramjet designers to follow in designing the next generation vehicle.


Flame Photography Discerns Peculiarity in Ramjet Ignition

Amid pictures of dazzling auroras and satellite passes, pictures of a flame may seem boring in comparison. However, a Chinese team’s recent photography of flames igniting in a high speed engine (Technical note, AIAA Journal of Propulsion and Power) captured an unexpected result.

Hiding their cameras behind a quartz window and taking pictures at a rate of 10,000 frames per second, the team photographed how a flame ignites in subsonic and supersonic conditions. Understanding combustion at different speeds is important to developing efficient ramjets and scramjets, which react atmospheric air with a fuel to accelerate the next generation of supersonic airplanes and space-planes. Despite our computing power, our knowledge of how air reacts in these high-speed, high temperature environments is limited. More insight into how flames ignite in this intense environment can lead to better ramjets and scramjets in the future.

Ramjets and scramjets use an inlet to swallow air at high speeds, which the engines mix with fuel and then ignite to provide thrust. The primary difference between a ramjet and scramjet is the speed at which the mix is ignited; ramjets combust at subsonic speeds and scramjets ignite at supersonic speeds. The fuel-to-air ratio influences whether combustion is subsonic or supersonic. In fact, the Chinese team was able to induce either subsonic or supersonic combustion simply by changing the fuel to air ratios. A lower fuel-to-air ratio produced supersonic combustion and a higher ratio allowed subsonic combustion. The speed of the heated air forced into the inlet never changed during the experiment.

By igniting a slow stream of oxygen and a kerosene fuel at different fuel-to-air ratios, the Chinese team was able to photograph how flames look in their infancy. The flame ignited at subsonic levels danced and transitioned through three distinct states before stabilizing at a steady glow. Conversely, the flame ignited at supersonic speeds (and a lower fuel-to-air ratio) stabilized more quickly. Through the photography, the Chinese team showed that the subsonic flame was affected by a counterflow, where the air moved toward the inlet instead of the exit.

Identifying the counterflow in the subsonic flame is an insight into how air moves and reacts after flame ignition. Better understanding of phenomena like this leads to accurate modeling of this extreme environment and development of more effective ignition sources. These pretty pictures may help in the design of the next space-plane.


Technical Notes – Improvements in air-breathing propulsion pave the way to space


This section is geared those who have a background in aerospace engineering:

The concept of  multiple rocket exhaust areas was based upon the Strutjet concept, which used multiple rockets in an individual air duct. The mixing effects of multiple rockets entrained more air for combustion, leading to greater efficiency. The team wanted to examine having multiple rocket exhaust ares without multiple heavy thrust chambers, so they built a annular nozzle with three major circular arcs and small circular air entrainment tubes in between each arc. For comparison, the team also used a circular nozzle.

To enable accurate comparison, the mass flow and Mach number was kept constant across the two nozzles. The experiment was also set up have the maximum amount of entrained air at the duct exit. Pressure sensors were arranged around the nozzle and exit plane of the duct. To replicate high speed environments, ambient air was injected into the duct at high pressures, replicating up to Mach 2 speeds (after expansion of the flow). No fuel was injected.

Initial results showed the annular nozzle entrained more air than the circular nozzle at lower pressures. The pressures taken at the duct exit plane also showed that the air pressures were more uniform in the annular nozzle configuration, suggesting more mixing of the air had taken place. These results showed an average Mach number 58% higher in the annular configuration than the circular configuration.

Please see the article “Experimental Investigation of an Alternative Rocket Configuration for Rocket Based Combined Cycle Engines” in the July-August edition of the AIAA Journal of Propulsion and Power for more details.

ScramSpace Grapples with Scramjet Testing Challenges

Yesterday, an Atlas V and an Antares rocket both roared off of the United States eastern coast and into space. However, in a remote area of Norway, another rocket launch didn’t go as planned. ScramSpace, a scramjet developed by researchers at the University of Queensland, disappeared over the Atlantic Ocean without sending back the hoped-for data. Scientists were left to clean up the two rocket sections that launched ScramSpace skyward and head home.

What’s the difference? How can complex orbital missions like the Atlas V and Antares be successful when a scramjet flight so easily goes awry? Part of the difference is the physics, which makes scramjets harder to test. While both rockets and scramjets are means of achieving high speeds, they differ in design. Scramjets squeeze high speed (greater than Mach 5) air into a small tube, compressing and heating it. Then a fuel is injected into the airstream. They only work above Mach 5. In contrast, rockets supply their own fuel and oxidizer (air is an example of an oxidizer, oxygen is another), mixing them to cause the explosive reaction that gets them moving. The physics of rockets is fairly well understood after years of launch. Scramjets have not had the luxury of so many tests, mainly because testing scramjets is difficult.

First of all, the testing setup for scramjets is tricky. Unlike rockets, which can be ignited at any speed, scramjets only work when they are already traveling at Mach 5 or greater. Since no research planes currently achieve these speeds, rockets are required. ScramSpace, the University of Queensland explains, uses a two-stage rocket to send the scramjet into space. Then the test is completed as the scramjet accelerates toward Earth (see graphic at top). Other projects, like the X-43 and X-51 projects in the US, launch the scramjet from a B-52 bomber, accelerate it with a rocket and then perform the experiment, according to NASA. These tests are not simple or easy to do.

Plus, once you get to Mach 5, the conditions are nasty. At high speed, aerodynamic heating causes the scramjet to experience extreme temperatures. This means that scramjets require high temperature alloys to simply maintain their structural integrity. The physics also get complicated at hypersonic (above Mach 5) speeds. Shockwaves bounce around inside the scramjet tube and must be “swallowed” correctly in order to achieve maximum thrust. In an ABC Catalyst special, a ScramSpace engineer explains that the air must also rush into the inlet at the right angle. Extensive ground tests help scientists determine these conditions, but they don’t depict how the vehicle will react in actual flight.

The test setup also leaves very little room for error. In the same ABC short video, a ScramSpace engineer explains how vital proper controls are to the experiment, demonstrating how reaction thrusters are used to properly align the craft in space. If improperly aligned, the ScramSpace vehicle would not work correctly. U.S. projects have also had difficulties controlling scramjets at high speeds. An X-51 WaveRider scramjet failed to ignite when one tiny fin (of four) became loose before the ignition, according to Zach Rosenburg. Controlling the vehicles is difficult and the conditions at Mach 5 and above leave little room for error.

Despite all these difficulties, scramjets have accomplished some amazing test flights. The third test of the X-43 still holds the world record for an air breathing engine (as opposed to a rocket engine, which carries its own “air” or oxidizer). According to NASA, it achieved a speed of Mach 9.6, and, theoretically, scramjets can go even faster, reaching Mach 14 or 15. That’s almost fast enough to reach space! The last test of the X-51 Waverider flew successfully for over 6 minutes, according to Space Ref. This was huge accomplishment for a test period that is typically 5-15 seconds.

Overcoming the difficulties of scramjet flight is difficult, not impossible. Perfecting scramjets is challenge worth taking on. Since scramjets use atmospheric air as the oxidizer, instead of carrying big oxygen tanks as rockets often do, they offer great weight savings over rockets. Yet, funding for scramjets is often limited. The ScramSpace team is heading back the University of Queensland, according to a recent report, not to begin building again, but to be disbanded. Once perfected, scramjets can become the transportation of the future, streaking through the skies at speeds above Mach 10, but they face many physical and budgetary challenges in the near future.